If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-11x^2+490x+3000=0
a = -11; b = 490; c = +3000;
Δ = b2-4ac
Δ = 4902-4·(-11)·3000
Δ = 372100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{372100}=610$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(490)-610}{2*-11}=\frac{-1100}{-22} =+50 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(490)+610}{2*-11}=\frac{120}{-22} =-5+5/11 $
| 2y=9+5 | | 19x-x2=60 | | 50c+125=4725 | | 567=88.768968756987906+r | | t-3/2+t+3/4=8t/3+2 | | 567=88.906+r | | 5x+10+62=18x+11 | | (2m-1)2=225 | | 4=1+y | | 6x2-3x-5=0 | | 2x=24÷3 | | 3×2x=24 | | 5x+20=500 | | 15*(12-15x)=125*(4-x) | | (x-1/2)^2=23.25 | | (8-2a)(6-2a)=(a) | | 3x²+5=0 | | 4w+2=2w–4 | | 3x=2x20 | | 4-(3x+2=44 | | 7(5x-3)-10=2(3x-51-3(5-7x) | | 15*(12+15x)=125*(4-x) | | 9x^=-6x+1 | | 8x+27=5 | | 7x+5=69-x | | 5^2x=200 | | 4(2n+3)=28 | | 8a^2+12a+3=0 | | 3x-6=45/x | | 3/4(x-2)=2 | | 3x(x-2}=-7x+1 | | -5p+7=42 |